
A non-self-intersection Douglas-Peucker Algorithm

WU, SHIN - TING AND MERCEDESROCÍO GONZALES MÁRQUEZ

Image Computing Group (GCI)
Department of Industrial Automation and Computer Engineering (DCA)

School of Electrical and Computer Engineering (FEEC)
State University of Campinas (Unicamp)

P.O.Box 6101, 13083-970 - Campinas, SP, Brazil
fting,meche g@dca.fee.unicamp.br

Abstract. The classical Douglas-Peucker line-simplification algorithm is recognized as the one that delivers the
best perceptual representations of the original lines. It is used extensively for both computer graphics and ge-
ographic information systems. There are two variants of this algorithm, the originalO(nm) method, wheren
denotes the number of input vertices andm the number of output segments, that works in any dimension, and
theO(n logn) one, which only works for simple 2D planar polylines. In the both variants, a self-intersecting
simplified line may be yielded if the accepted approximation is not sufficiently fine. Based on star-shaped subsets,
we present in this paper yet anotherO(mn) variant of Douglas-Peucker algorithm which preserves the non-self-
intersection property for any predefined tolerance.

1 Introduction

Often the geometric resolution of a polyline is much higher
than the resolution supported by the application, such as vi-
sualization of geographic map boundaries or visualization
of curves approximated by sampling a parametric curve at
regular small intervals in a raster display. For the sake of ef-
ficiency, algorithms that can extract essential features from
detailed data of the original polyline and represent them on
a simple one having fewer vertices that suffices for the spec-
ified resolution have been pursued by the researchers in dif-
ferent contexts [14, 8, 11, 7, 15, 16].

A simple line-simplification algorithm is constructing
a polyline with edge segments larger than the� > 0 ac-
cepted tolerance. It may be achieved by discarding recur-
sively the subsequent vertices whose distance from a prior
initial vertex is less than some maximum distance� > 0.
The vertex that is farther away than� is accepted as part of
the new simplified polyline, and it becomes the new initial
vertex for further simplification [13].

From detailed study of mathematical similarity and
discrepancy measures, the Douglas-Peucker algorithm is
pointed out as the most visually effective line simplification
algorithm [4, 10]. Whereas vertex reduction uses closeness
of vertices as a rejection criterion, the Douglas-Peucker al-
gorithm uses the closeness of a vertex to an edge segment.
It is a recursive procedure that starts with a line segment
whose extreme vertices coincide with the extreme vertices
v0 andvn of the polyline to be simplified. Each segment
vkvj is split at the farthest vertexvi, k < i < j, to it until
the distance between the sequence of verticesvk � � � vi and
vkvi and the sequence of verticesvi � � � vj andvivj are less

than the fixed tolerance�.
The most time consuming part of the Douglas-Peu-

cker procedure is the evaluation of distance formula ofn

input vertices tom line segments. Hence, its worst case
time isO(mn). Hershberger and Snoeyink [6] presented
an improvement for speeding up the Douglas-Peucker algo-
rithm, making it aO(n logn) time algorithm in the worst
case. The speeding up is achieved by noting that the farthest
vertex must lie on the tangents to the convex hull of the
polyline which are parallel to the corresponding simplified
segment. The authors proposed, then, a way to efficiently
maintain the path hulls of subchains in order to use binary
searches for obtaining that vertex.

However, it is known that the Douglas-Peucker algo-
rithm does not necessarily preserve the non-intersection
property of the simplified line for any predefined tolerance.
Saalfeld [1, 9] observes that the self-intersection may only
occur when the splitting vertex of a segment lies within the
convex hull of the set of vertices associated to another seg-
ment and suggests as a solution to choose an�0 slightly less
than the original tolerance� for forcing further simplifica-
tion.

In this paper we present a star-shaped Douglas-Peu-
cker algorithm that preserves topological consistency be-
tween the original and the simplified 2D polylines for any
predefined tolerance. We devised a sequential procedure
that efficiently controls the relationship between the con-
vex hull of the sequence of vertices associated to each seg-
ment and the rest of segments of the simplified polyline.
We used the concept of signed distance: Given a sequence
of counterclockwise oriented verticesv1 � � � vn, and a point

w to whichvivi+1, 1 < i < n, is the closest oriented seg-
ment, the sign of the distance ofw to v1 � � � vn is negative
if viwvi+1 is clockwise oriented; otherwise, the distance is
positive.

Our procedure is based on two facts: given a sequence
of verticesS, a sub-sequenceSi � S of vertices on the
border of a star-shaped region always builds a non-self-
intersection polylinePi andPi may only intersect a sim-
plified line defined by the vertices ofS � Si if there are
vertices inS � Si that have negative distances to the ori-
ented segments ofPi.

In section 2 the Douglas-Peucker algorithm is briefly
described for completeness. In section 3 we give a new al-
gorithm based on a star-shaped decomposing algorithm. A
theoretical analysis of our proposal is carried out in Sec-
tion 4. In section 5 some sample examples are shown. Fi-
nally, in section 6 our future research directions are pre-
sented.

2 Douglas-Peucker Simplification Algorithms

Besides its good visual results, the Douglas-Peucker algo-
rithm is very simple to program and works for any dimen-
sion, once it only relies on the distance between points and
lines. Several implementations are available at sites of in-
ternet [13, 3]. Its basic rule is that the approximation must
contain (a subset of) the original data points and all the orig-
inal data points must lie within a certain predefined distance
to the approximation.

Given a sequence of vertices as depicted in Figure 1.a.
The Douglas-Peucker algorithm has a hierarchical structure
starting with a crude initial guess, namely the single edgee

joining the first and last vertices of the polyline (Figure 1.b).
Then the remaining vertices are tested for closeness to that
edge. If there are vertices further than a specified toler-
ance� away from the edge, then the vertex farthest from it
is added to the previously simplified polyline. This cre-
ates a new approximation for the original polyline (Fig-
ure 1.c). Using recursion, this process continues for each
edge (Figures 1.d,e) until all vertices of the original poly-
line are within� (Figure 1.f).

This algorithm hasO(nm) worst case time and
O(n logn) expected time, wheren is the number of in-
put vertices andm is the number of the segments of the
simplified polyline. Note that this is an output dependent
algorithm, and will be very fast whenm is small, i.e. when
the approximation is coarser. On the other hand, if� has
a larger value, the simplified polyline may intersect itself.
Figure 2 illustrates a case for which three splittings on the
initial segmente were sufficient for satisfying the tolerance
condition, but could not avoid self-intersection. One solu-
tion is to reduce the value of�, which may lead to a unnec-
essarily finer approximation. An alternative solution pro-

posed by Saalfeld [1, 9] is to continue to apply the Douglas-
Peucker procedure only on the part of the simplified poly-
line that intersects itself. Moreover, Saalfeld noted that self-
intersections may only occur with vertices that lie within
the closed convex hull of the vertices associated to other
segments. Hence, the value of� is only reduced for those
vertices.

Tolerance
e

Figure 2: Self-intersection.

3 The star-shaped Douglas-Peucker Algorithm

Despite its popularity in geographical information, image
processing and computational geometry applications, the
Douglas-Peucker algorithm still suffers from the geomet-
ric and topological problems when the approximation tol-
erance� is too large. In this section, we present an im-
provement for the method of Douglas and Peucker that can
prevent self-intersections for any specified tolerance. Two
facts are used: given a sequence of verticesS, a simplified
polyline of the subsequenceSi � S of vertices on the bor-
der of a star-shaped region is always s non-self-intersecting
polyline and, according to Saalfeld [1], this polyline may
only intersect the rest of input segments if there are vertices
in S � Si that have negative distances to the polyline.

A star-shaped regionR is one in which the entire re-
gion, including its border, is visible from at least one fixed
pointW of R. Hence, a polyline built by a subsequence
of the original vertex sequence on the border of this region
cannot cross itself. Based on this fact, we recursively parti-
tion the sequenceS of input vertices into subsets
S0; � � � ;Si; � � � ;Sm of sequential vertices, each of which
lies in a regionRi and is totally visible from a fixed point
Wi. Moreover, we restrict the search domain for the farthest
vertex of a simplified segment lies inRi to the sequence of
verticesSi. In this way, we ensure that the simplified poly-

Tolerance

(a) (b) (c)

(d) (e) (f)

Figure 1: The basic Douglas-Peucker algorithm.

line of a sequenceSi cannot self-intersect.
Given a sequenceS of input vertices of a closed non-

self-intersecting polyline (Figure 3). For partitioning it into
subsequences that are radially visible, we propose the fol-
lowing recursive algorithm: We start with a segmentvivj
such that all the verticesvk, i < k < j, have distance from
vivj less than the predefined tolerance� andvivj is inside
the closed polygon. Then, we set the midpointM0 onvivj
as the first fixed pointW0 and determine the subset of ver-
ticesS0 � S that are visible fromM0 (the region bordered
by the solid line in Figure 3). If there are vertices whose
distance to the corresponding simplified segment is greater
than the tolerance�, we distinguish two situations:

1. the farthest vertexvf is in S0: the segment is split at
it;

2. vf does not belong toS0: the segment is split at the
closest vertex tovf on the border ofR0.

The refinement is carried out until all vertices inS0 are un-
der�. We take the advantage of the fact that if there are ver-
tices out ofS0 with distance greater than�, the correspond-
ing simplified segment must have as extreme vertices two
vertices on the border of the star-shaped regionR0. The
midpoint of this segment induces a new star-shaped region
and is, thus, a new fixed point (e.g, the regions bordered by
the dashed line in Figure 3). Successively, the procedure is
performed until the distance of every vertex inS is under�
(e.g., the region visible fromM2 in Figure 3).

vi vjM0

M1

M2

M3

Figure 3: Star-shaped partitioning.

Observe that the determination of a fixed point for each
star-shaped region is recursive, starting at a segment of the
first simplified polyline. Hence, it is important to devise a
procedure for obtaining this first approximation. For closed
non-self-intersecting polylines, the first approximation may
be the segment that joins two verticesvi andvj such that
all the verticesvk, i < k < j, have distance fromvivj less
than the predefined tolerance andvivj is inside the closed
polygon. For open polylines, we should consider two cases
when we join the two extreme verticesv1 andvn with an
edge:

1. if the edge does not cross the polyline, it is then the
first coarsest approximation (Figure 4.a);

2. If the edge crosses the polyline, then we distinguish
two types of crossings – from left to right (LR) and
from right to left (RL). If the there are alternate LR
and RL crossings, then we transform it into a sequence
of edges consisting ofv1, vn and the vertices that are
on the border of the convex hull of the vertices in the

half-plane and that “close” the polyline, as shown in
Figure 4.b; else we order the crossings along the edge
v1vn and take as the first approximation the segments
that link the next closest vertex of each intersection
point in the sequenceS (Figure 4.c). We may also
have a mix of two cases, for which we partition the se-
quence of input vertices into classifiable sub-sequen-
ces and handle each of them separately (Figure 4.d).

v1

vn

First Simplification

v1

vn
Half Plane 1

Half Plane 2
First Simplification

Convex Hull
(a) (b)

v1

vn

First Simplification

v1

vn

First Simplification
(c) (d)

Figure 4: First approximation for an open polyline.

The restriction of the search domain to a star-shaped
region guarantees that the resulting sub-polyline does not
intersect, but it cannot ensure that two sub-polylines lying
in disjoint star-shaped regions do not overlap (Figure 5.a).
Based on the remark of Saalfeld that self-intersections may
only occur with vertices that lie within the closed convex
hull of the vertices associated to other subsegments [1], we
propose an efficient way to identify those convex hulls by
using signed distances: a segment may intersect another
one only if there exist vertices associated to it with negative
distance. For example, in Figure 5.a there are three seg-
ments having vertices with negative distanced1, d2 andd3;
thus, they are candidates for refinement. However, further
refinement is only carried out if a vertex of one sub-polyline
really penetrates the convex hull of the other. Figure 5.b
shows the result of refinement of the segment having nega-
tive distanced1.

d1

d2

d3

Tolerance
(a)

(b)

Figure 5: Further refinement.

For illustration, let us apply our procedure for simpli-
fying the same sequenceS of input vertices given in Fig-
ure 1.a. Figure 6.a illustrates the first star-shaped region.
The start and the end vertices,s ande, are connected with a
straight line as the initial rough approximation of the poly-
line (Figure 6.b). The Douglas-Peucker procedure is only
carried out considering the vertices that lie within the first
star-shaped region visible fromW0. If all the distances be-
tween the simplified polyline and the vertices ofS0 are less
than the specified tolerance�, then the procedure stops (Fig-
ure 6.c). Another star-shaped region is then determined if
there are still vertices out ofS0 that have distances greater
than � (Figure 6.c). The process is repeated (Figure 6.d-
e) until all the distances are less than the specific tolerance
(Figure 6.f).

4 Analysis

Given a polyline withn input vertices,v1; � � � ; vn:

1. Obtain the first approximation for the simplified poly-
line.

(a) Determine the intersection ofv1vn and the orig-
inal polyline. If there is no intersection go to (2).

(b) It there are alternate crossings, then determine
the convex hull for the vertices lying in one half-
plane and go to (2).

(c) Order the crossingsci alongv1vn, such thatv1 <

Tolerance

W0 W0 W0

W1

(a) (b) (c)

W0

W1

W2

W0

W1

W2

W3

W0

W1

W2

W3

(d) (e) (f)

Figure 6: The star-shaped Douglas-Peucker algorithm.

c1 < � � � < vn and take the sequence of the near-
est vertices as the first approximation.

2. Refine the first approximation:

(a) Determine the sequence of verticesSi lying in a
star-shaped region.

(b) Apply the Douglas-Peucker algorithm for these
vertices.

(c) Check the distance of vertices out ofSi. If some
have distance greater than the specified tolerance,
go to (2a).

3. Further refine the polyline for eliminating the remain-
ing self-intersections:

(a) For each segment having vertices with negative
distances, test the conflict and further refine it
until the conflict is solved.

There is a variety of ways to implement our algorithm,
since a number of algorithms is available for solving each
subproblem. For the first step, as we already explained, the
problem may be reduced to determining the convex hull of
the vertices lying in a half-plane. This is a classic prob-
lem and there is a variety of algorithms. Most of them have
O(n logn) time complexity, wheren is the number of in-
put vertices. The second step may be carried out inO(nm)
time, wheren is the number of the input vertices andm the
number of the output star-shaped regions. In the third step,
we may use theO(log n) point-in-polygon inclusion test

algorithm, wheren is the number of the input polygon [5].
Hence, in the worst case, we may haveO(n log n) behav-
ior for all the inclusion tests.

Summarizing, our algorithm has in the worst case
O(nm) time complexity, wherem depends on the number
of star-shaped regions. Despite the similar timing behavior,
our algorithm has over the classic Douglas-Peucker algo-
rithm the advantage that the simplified polyline does not
cross itself for any specified tolerance.

5 Results

Two sample results with larger values for� are presented.
For comparison purpose, we include the results output by
the classical Douglas-Peucker algorithm for each input set
(Figure 7). Observe that our procedure has a simplification
ratio comparable to the Douglas-Peucker procedure with
the advantage that no self-intersection appears in our out-
put.

We did not perform detailed measurements for analyz-
ing the visual effect of our algorithm. However, the sim-
plified polylines we obtained are fair from our subjective
judgment in the sense that it includes vertices where there
is a large variation on the curvature of the original polyline
(border of two star-shaped regions). Just for your subjective
evaluation, we give in Figure 8 simplifications of the same
original polyline for different values of�.

(a) (b)

Figure 7: Outputs from (a) DP algorithm and (b) our pro-
posal.

� = 5 � = 10

� = 15 � = 20

Figure 8: Simplified polyline for distinct tolerances.

The motivation of our work was the simplification of
the border of a range image which is used to determine the
initial simplified mesh for the 3D sample points. Hence, we
also applied the proposed algorithm in the simplification of
the border of real samples. Figure 9 shows the simplified
polyline of the contour of the image of a frog, Figure 10 of

a bunny [12] and Figure 11 presents the simplified polyline
of the contour of the image of the Chopin’s bust.

6 Concluding Remarks

In this paper we present, without increasing the time com-
plexity, an improvement to the classic Douglas-Peucker line
simplification algorithm in terms of preventing
self-intersections. We show that slight modifications in the
way that a splitting vertex is chosen at each refinement it-
eration, we may avoid self-intersections for the simplified
lines lying in a star-shaped region. Moreover, we also present
very simple criterion for identifying the conflicts that may
arise among the lines lying in distinct star-shaped regions.

The time complexity of our algorithm depends on the
number of induced star-shaped regions, which in its turn
depends on the choice of the fixed pointW . The larger
is the coverage of the field of view from a fixed point, the
less tends to be the numberm of the star-shaped regions.
Hence, it deserves further investigation the computation of
the location of fixed points to induce a less number of star-
shaped regions.

Figure 9: Frog.

Figure 10: Bunny.

Figure 11: Chopin’s bust.

Another possible research direction is to apply the pro-
posed procedure over the the Hershberger and Snoeyink al-
gorithm and evaluate its performance. We believe that we
may take the advantages of the both methods to design a
robust and efficient planar line simplification algorithm.

Our area of interest is 3D model simplification. That
is, given a set of sample grid points we would like to obtain
a 3D simplified polyhedron. We believe that the proposed
iterative line refinement is extensible to 3D. In fact, da Silva
and Wu [2] have already proposed a 3D model reconstruc-
tion that restricts the search domain to a star-shaped 3D
region for avoiding self-intersections. However, their ap-
proach cannot deliver a nice perceptual representation for
the simplified polyhedron. As further work, we plan to in-
tegrate in the algorithm proposed by da Silva and Wu some
refinement principles adopted in the Douglas-Peucker tech-
nique for improving the visual aspect of the reconstructed
3D mesh.

7 Acknowledgments

We would like to acknowledge FAPESP for financial sup-
port under the grant number 00/10913-3.

References

[1] A.Saalfeld. Topologically consistent line simplifica-
tion with the Douglas Peucker algorithm.Cartogra-
phy and Geographic Information Science, 26(1):7–18,
1999.

[2] R.M. da Silva and S.-T. Wu. Reconstructing a 3d
model from range images using radial flow model. In
IEEE Proceedings Sibgrapi 98, pages 54–61, 1998.

[3] Jonathan de Halleux. An C++ implementa-
tion of Douglas-Peucker line approximation al-
gorithm. http://www.codeproject.com/
useritems/dphull.asp .

[4] D. Douglas and T. Peucker. Algorithms for the re-
duction of the number of points required for represent
a digitzed line or its caricature.Canadian Cartogra-
pher, 10(2):112–122, 1973.

[5] Eric Haines. Point in polygon strategies.Graphics
Gems IV, pages 24–46, 1994.

[6] John Hershberger and Jack Snoeyink. Speeding up
the Douglas-Peucker line-simplification algorithm. In
Proceedings 5th Symp on Data Handling, pages 134–
143, 1992.

[7] G. F. Jenks. Lines, computers and human frailties. In
Annals of the Association of American Geographers,
pages 1–10, 1981.

[8] T. Lang. Rules for robot draughtsmen.Geographical
Magazine, 22:50–51, 1969.

[9] M.Johnston, C.D. Scott, and R. Gibb. Problems aris-
ing from a simple GIS generalisation algorithm. In
Proceedings of the Eleventh Annual Colloquium of the
Spatial Information Research Centre, pages 191–200,
Dunedin, New Zealand, 1999.

[10] U. Ramer. An iterative procedure for he polygonal
approximation of plane curves.Computer Graphics
and Image Processing, 1:224–256, 1972.

[11] K. Reumann and A.P.M. Witkam. Optimizing curve
segmentation in computer graphics. InProceedings of
the International Computing Symposium, pages 467–
472, 1974.

[12] Range images. http://sampl.eng.
ohio-state.edu/sampl/data/3DDB/RID .

[13] Dan Sunday. Geometric algorithms. http:
//geometryalgorithms.com/Archive/
algorithm_0205/algorithm_0205.h%
tm .

[14] W.R. Tobler. An experiment in the computer gener-
alization of map. Technical report, Office of Naval
Research, Geography Branch, 1964.

[15] M. Visvalingam and J.D. Whyatt. Line generalisation
by repeated elimination of points.Cartographic Jour-
nal, 30(1):46–51, 1993.

[16] Z. Zhao and A. Saalfeld. Linear-time sleeve-fitting
polyline simplification algorithms. InProceedings of
AutoCarto 13, pages 214–223, 1997.

